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This paper treats the liquid-metal flow in a straight circular pipe with a thin metal 
wall. A strong magnetic field is applied by a magnet with parallel poles that end 
abruptly. In the plane midway between the magnet poles : (a) far upstream, the flow 
is uniform, fully developed in a uniform magnetic field; (b )  as the flow enters the 
non-uniform magnetic field near the end of the magnet, the flow moves away from 
the central part of the pipe and becomes concentrated as two jets near the points 
where the magnetic field is tangential to the pipe wall; (c) further downstream where 
the magnetic field strength is O ( d )  compared with its value upstream, the flow 
migrates from these jets back towards a uniform flow distributed over the entire pipe 
cross-section. Here, c is the wall conductance ratio, which is assumed to be small. The 
analysis also applies to flow into the magnetic field, because inertial effects and 
induced magnetic fields are neglected. There are circulations of electric current in 
planes parallel to the magnet poles. These currents produce a pressure drop in 
addition to that for two fully developed flows in a uniform magnetic field and in no 
magnetic field, joined at the end of the magnet. This pressure drop is given by 0.9336 
$ c b  V, Bi L ,  where /3 is a measure of the magnetic field gradient with a minimum 
value of 2/n, (r is the liquid metal’s electrical conductivity, V, is the average velocity, 
B, is the strength of the uniform magnetic field, and L is the inside radius of the pipe. 
This three-dimensional pressure drop is O(c-iL) times the pressure gradient for the 
fully developed flow in the uniform magnetic field. 

1. Introduction 
The present problem is related to the flow of liquid lithium through a magnetic 

confinement fusion reactor. In  such a reactor, the plasma is confined in a vacuum 
by a strong magnetic field, which is produced primarily by superconducting magnet 
coils (Holroyd & Mitchell 1984). 

The liquid-lithium feed and return pipes must pass between the superconducting 
magnet coils. At these points, the flow passes from a region of negligible magnetic 
field to a region of very strong magnetic field, or vice versa, over a very short length 
of pipe. In  early fusion design studies, these entrance and exit flows were treated by 
assuming that the flow remains uniform throughout. Maxwell’s equations were solved 
for the electric currents in a solid conductor moving into or out of a magnetic field. 
Finally the body force due to these currents gave the total pressure drop. This 
approach is valid for a weak magnetic field because the fluid inertia is so much greater 
than the electromagnetic force that the inertia carries the flow through the entrance 
or exit region with no disturbance. However, a fusion reactor has a very strong 
magnetic field, so that the electromagnetic force is many times larger than the fluid 
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FIQURE 1.  Sections of a thin-walled circular pipe and a magnet showing coordinates and 
velocity components. (a) Longitudinal section z = 0. (b)  Cross-section x = 0. 

inertia. In a feed pipe, the flow deviates radically from uniform flow where the pipe 
enters or leaves the magnetic field. Therefore, the moving-solid-conductor solution 
does not apply. 

The present paper treats the liquid-metal flow in a straight circular pipe with a 
thin metal wall. A magnet with parallel poles ends abruptly at  x = 0, where z is 
measured along the pipe centreline (see figure 1).  The analysis applies for flows both 
into and out of the magnetic field. The results show that the moving-solid-conductor 
solution overestimates the pressure drop by at least one order of magnitude. The 
dimensionless pressure drop from the moving-solid-conductor solution is O( 1 ), while 
the pressure drop from the present solution is O(ci), where c is the wall conductance 
ratio, and c = 0.01 is a typical value for a fusion-reactor lithium flow. 

The present problem is related to another problem of importance for blanket 
calculations. If a pipe or duct in a uniform magnetic field has an elbow so that the 
flow passes between a region with a large transverse magnetic field and a region with 
a small transverse field, then the flow is similar to that in a straight pipe or duct 
entering or leaving a magnetic field. The flows are not identical because the large axial 
magnetic field on one side of the elbow is absent from the entrance-exit problem, and 
this axial magnetic field affects the flow significantly. However, the flows have many 
qualitative similarities, and the present analysis will help guide any future analyses 
of the elbow problem. 
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2. Basic formulation 

incompressible fluid in the presence of a steady magnetic field are 
The dimensionless equations governing the steady flow of an electrically conducting, 

N-'(v.V)v = - V p + j x  B+M-2V2v,  ( la )  

j = - V @ + v x B ,  V * u = O ,  ( l b ,  c )  

V * j = O ,  V - B = O ,  V x B = R , j ,  (Id-f 1 
(see e.g. Shercliff 1965 p. 24). Here u,  p ,  j ,  B and @ are the velocity, pressure, electric 
current density, magnetic field and electric potential function respectively, which are 
normalized with respect to V,, aV, Bt L ,  aV, B,, B, and V, B, L respectively. Here, 
V,, B, and L are the characteristic velocity, magnetic field strength and length, while 
a is the fluid's electrical conductivity. The dimensionless parameters, 

U B ~  L 
N = -  , M = B,L(a/q):,  R ,  = paV, L,  

P V ,  

are the interaction parameter, Hartmann number and magnetic Reynolds number 
respectively, where p,q ,  and p are the fluid's density, viscosity and magnetic 
permeability, which, along with a, are assumed to be constants. The present analysis 
concerns the flow in a straight, circular pipe near the end of a long, wide magnet, 
as shown in figure 1. The inside radius of the pipe is chosen for L,  the average axial 
velocity is chosen for V,, and the strength of the uniform magnetic field between the 
poles and far from the ends or sides of the magnet is chosen for B,. 

We assume that R, < 1, so that we can neglect the induced magnetic field due to 
the electric currents in the fluid and pipe wall. It turns out that the largest currents 
are O(c%), where c = a, t /aL is the small wall conductance ratio, while a, and t are 
the electrical conductivity and thickness of the pipe wall. Therefore, the neglected 
induced magnetic field is actually O(ciR,). For the flow problem, B is a known vector 
field, obtained by solving equations ( 1  e , f )  with zero on the right-hand side of ( I f ) .  
We assume ( a )  that the length, width and thickness of the magnet poles are all much 
larger than the gap, 2d, and (b) that the susceptibility of the poles is large. Then the 
solution for the plane magnetic field, 

in the central region where the pipe is located, involves a straightforward application 
of a Schwarz-Christoffel transformation. Walker & Buckmaster ( 1979) present 
contours of the magnetic-field strength throughout the non-uniform-field region near 
and beyond the end of the magnet. The present analysis requires the asymptotic 
solutions for large x, i.e. far beyond the end of the magnet. These solutions are 

P PY 
2 2  X 

x '1, B, = - + 0 ( ~ - 3 ) ,  B, =--+(I( 
- 

where P = 2 d / x L .  
We also assume (a)  that M >> 1, so that viscous effects are confined to boundary 

layers, (b) that N is sufficiently large that the inertial terms on the left-hand side of 
(1  a )  are negligible everywhere, and ( c )  that the thin-conducting-wall approximation 
holds, namely t -g L and M-' 6 c 4 1. The precise condition on N is determined as 
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part of the solution. With the thin-conducting-wall approximation, the boundary 
conditions are 

j ,  = -cr$+g), u = 0, at r = 1, 

where ( r ,  8, z) are cylindrical coordinates, as shown in figure 1 (b )  (Holroyd & Walker 
1978). With the assumptions that the induced magnetic fields and the inertial effects 
are negligible, the governing boundary-value problem (1 a d ) ,  (3), with zero on the 
left-hand side of (1 a) ,  is linear. Therefore, the solutions for the flows out or into the 
magnetic field (flows in the plus or minus x-direction in figure l a ,  respectively) are 
identical except for sign differences for certain variables. We need only consider flow 
out of the magnetic field, i.e. in the plus 2-direction in figure 1 (a) .  

For thin-wall pipes or ducts in non-uniform magnetic fields, there are certain 
characteristic surfaces for the inertialess, inviscid-core solutions, i.e. for the flow 
outside the viscous boundary layers. The analysis for these characteristic surfaces and 
an interpretation of their physical significance are given by Holroyd & Walker (1978), 
and a few of their results are reproduced here. For each magnetic-field line, the 
integral 

has a value. Here, s is the distance measured along the magnetic-field line from its 
first intersection with the inside surface of the pipe or duct to its second intersection 
at s = so, while B(s)  is the local magnetic field strength at each point on the 
magnetic-field line. A set of magnetic-field lines inside the fluid with the same value 
of 5 constitutes a characteristic surface. Neglecting O(c) terms, p must be constant 
on the characteristic surfaces, while j must be tangent to the surfaces and tangent 
to the pipe wall at  each surfacewall intersection. Similarly, neglecting terms which 
are comparable to the electric current density component tangent to the characteristic 
surfaces, $ must be constant on the surfaces and u must be tangent to them. 

In the uniform magnetic field far upstream of the end of the magnet, 5 = (1 - z2)t, 
and the characteristic surfaces are the planes z = constant. As the flow approaches 
and passes the end of the magnet, B decreases from 1 to 0, and the characteristic 
surfaces move away from z = 0 and toward z = & 1 in order to maintain constant c. 
New surfaces for 6 > 1 appear at  z = 0 and also move toward z = f 1 downstream. 
As x + rn and B + 0, all characteristic surfaces for finite c converge to the points y = 0,  
z = 1,  as sketched in figure 2. In the uniform field far upstream, the flow is fully 
developed, and the non-zero core variables are 

C - -- z jz=- c _ -  dP u = l ,  $=-  
(l+C)’ ( l + c ) ’  dx (l+c)’ 

(Shercliff 1956), where u = (u, v, w). Actually, this solution assumes that t Q L, but 
treats c as an arbitrary, i.e. 0(1), constant, and neglects O(M-’) terms. Since we 
assume that M-l 4 c -4 1, we replace (1 + c )  by 1 in the solutions (5 ) .  It turns out 
that j = O(c$ in the non-uniform-field region near the end of the magnet, so that the 
0(1) flow, which is uniform far upstream, must follow the characteristic surfaces for 
0 < 6 < 1 toward the points y = 0, z = f 1. Since the geometry is symmetric about 
the plane z = 0, the flow is also symmetric and w = 0 a t  z = 0. All the characteristic 
surfaces for y > 1 intersect the ( z  = 0)-plane at right angles, so that the tangential 
velocity along these surfaces is zero here. A characteristic surface is a stream surface 
for the O(1) velocity, so this velocity is zero on all the surfaces for c > 1.  The velocity 



Liquid-metal flow in a thin conducting pipe 203 

.-.-.-.- 

FIQURE 2. Sketch of the intersections of the characteristic surfaces with the y = 0 plane for 
- 1  < z < 0. 

in this region is O(ci). As x increases and B decreases, u near y = 0, z = & 1 becomes 
large, and the assumptions for the characteristic-surface solution fail. Physically, the 
magnetic field becomes too weak to hold the flow on the characteristic surfaces, so 
that the flow begins to migrate across these surfaces and back toward a more uniform 
flow. 

As long as x = 0(1), then B = 0(1), v = O(1) on the characteristic surfaces for 
0 < < 1, and the characteristic-surface solution is valid. To consider the change in 
the relationships between the terms in ( 1 )  which reverses the evolution toward the 
high-velocity jets near y = 0, z = f 1, we consider z = O(S-l) %- 1,  where 6 is a small 
parameter to be determined. Then the solutions (2) indicate that By = O(S) and 
B, = O(ySz). The characteristic surfaces for 0 f 5 < 1 have become concentrated in 
the side regions for (1 -S2)i = 1 -O(S2) < IzJ < 1, as indicated in figure 3. Therefore, 
for the side regions carrying the 0 ( 1 )  flow, 8/8z = O(S), 8/8y and a/80 are O(S-’), 
8/32 = 0(cY2), and B, = O(S3) because y = O(6).  Conservation of mass indicates that 
u = O(cY3) since the area of the side region is O(S3).  If all three scalar terms in the 
continuity equation (1 c) are comparable, namely then v = O(S-l) and 
w = O(1). For $, the fully developed-flow solution ( 5 b )  and the fact that $ is constant 
on the characteristic surfaces (until their assumptions fail) indicate that $ is O( 1) in 
the side regions, but varies from 0 to O( 1 )  over an O(S2) transverse distance. This is 
compatible with the orders of the x- and z-components of u x Bin the Ohm’s law (1 b ) .  
Therefore 8z$/80z = O(?r2) at r = 1, so that the boundary condition (3a)  indicates 
that j, = O ( C S - ~ )  at r = 1.  To be valid for the side regions, the boundary condition 
(3a)  requires that t < SL. The order ofj, implies thatj,  = O ( C S - ~ )  in the side regions. 
If all three scalar terms in (1 d )  are comparable, namely O(cS-*),  then j, = O ( C S - ~ )  
and j ,  = ~ ( C S - ~ ) .  

The characteristic-surface solution for $ and v follows from the equations (1 b,  c), 
the boundary condition on the inviscid-core solution: vuT = 0 at r = 1, and the fact 
thatjisnegligible in the Ohm’s law (1 b) .  The characteristic-surface solution fails when 
at least one component ofjis comparable to the terms on the right-hand side of Ohm’s 
law. For the side regions, the ratios of the left-hand sides to the right-hand sides of 
the 2-, y- and z-components of the Ohm’s law ( l b )  are O(S-%), O(CY-~C) and O ( c ) ,  
respectively. Therefore, the characteristic-surface solution fails for 6 = ci ,  when j ,  is 
comparable to 8$/8x and wB,. Physically, as the flow becomes concentrated as jets 
near y = 0, z = f 1, u increases much faster than By decreases. Hence, 8$/8z must 
become large in order to balance uB, in the z-component of Ohm’s law. Since q5 is 
continuous across the wall-fluid interface, this implies a large gradient of q5 in the 
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FIGURE 3. Cross-section for z = O(8-l)  % 1 showing side region near y = 0, z = - 1 where 
characteristic surfaces for 0 < 5 < 1 are concentrated. 

pipe wall near y = 0, z = f 1.  This voltage gradient drives electric currents in the wall 
in the 0 direction, and these currents must complete their circuit through the liquid. 
Part of the wall current entering the liquid turns to flow axially inside the side region. 
Since this region has a small area, the resultant j, is large. As B decreases, the flow 
becomes progressively more concentrated into jets near y = 0, z = f 1,  until the j, 
from the pipe wall becomes sufficiently large to change the relationships between the 
terms in the Ohm’s law. 

An alternate and complementary physical picture is possible. Far upstream $ = z 
and far downstream $ = 0, so that there are axial voltage gradients with a$/ax 5 0 
for z 3 0. These gradients drive axial electric currents in the &%-directions for z 3 0. 
These currents follow the characteristic surfaces through the core near the end of the 
magnet and into the side regions downstream. Ultimately the circuit must be 
completed far upstream and downstream by transverse currents in the pipe wall or 
in the liquid. I n  the core near the end of the magnet, the axial currents are spread 
over an O(1) area, so thatj,  is much smaller than a$/ax, and Ohm’s law dictates that 
w 3 0 for z 0 in order for B,w to  balance a$/ax. Therefore, in the core, the flow 
must migrate away from z = 0 and toward z = & 1. The characteristic surfaces 
concentrate the axial currents near y = 0, z = f 1 as x increases. Eventually, j, grows 
to equal and then to  exceed -a$/ax, so that the sign of w reverses and the flow 
migrates back toward z = 0. 

Our first physical ‘picture’ views the 0 variation of $ in the pipe wall adjacent to 
each side region as the important voltage drop; our second physical picture views 
the overall x-variation of $ in the liquid as the important voltage drop. The complete, 
three-dimensional electric-current circuit involves various subregions of the fluid and 
adjacent parts of the pipe wall as electrical resistances in series and in parallel. As 
with any electrical circuit, the current in any part depends on the resistances and 
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FIGURE 4. The inviscid side region is separated from the wall at r = 1 by the Hartmann layers 
(h) and by the viscous side region (va). 

net electromotive forces in all parts. In $3 we treat the side regions far downstream 
in the decaying magnetic field. In $4 we treat the upstream completion of the 
electrical circuit and the resultant perturbation of the fully developed flow. In $5 we 
attempt an overall picture of the electrical circuit and fluid motion. 

3. Side regions in  the decaying magnetic jield 
Because of symmetry, we need only consider the side region near y = 0, z = - 1 .  

(6) 
We introduce 

x = c- ix ,  y = CiY, 2 = - 1+ciz ,  

so that the derivatives with respect to the rescaled coordinates, X, Y ,  2, are 0(1), i.e. 
are independent of c .  For the dependent variables we introduce 

u=c- tu ,  v =  c- iv ,  w = w, 
j, = ciJ,, j ,  = dJ,, j, = dJ,, 

= 0, p = CiP, 

where a capital letter denotes the leading term in the asymptotic expansion for a 
particular side-region variable and is a function of X, Y ,  2. 

The inertial terms on the left-hand side of the momentum equation ( l a )  are 
negligible in the side region if 

N % c d .  

Since this is the most severe restriction on N for any subregion of the flow considered 
here, it is the assumption required for the present inertialess analysis. The thin-wall 
approximation, M-' 4 c 6 1 ,  is sufficient to guarantee that the viscous terms in the 
momentum equation ( 1  a )  are negligible in the side region. The inviscid side region 
is separated from the pipe wall by viscous Hartmann layers and a viscous side region, 
as shown in figure 4. The dimensions of these viscous regions differ from their 
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traditional dimensions simply because the local magnetic-field strength is dB, ,  
instead of B,. Therefore, the local Hartmann number M ,  = 8211, the Hartmann 
layer thickness is O(Mil) and the viscous side region's dimensions are 
O(M& x O(M&. The Hartmannlayers satisfy the boundary conditions (3)  and match 
the side-region variables provided the latter satisfy the condition (3a)  and the 
traditional inviscid velocity condition, 

TI, = 0, at r = 1, (8) 
neglecting O(M-'c-i) terms. The viscous side region matches the inviscid-side-region 
variables provided the latter satisfy certain regularity conditions, namely that U and 
J ,  are bounded at Y = Z = 0 (Roberts 1967). 

We introduce the new independent and dependent variables (6 ,7)  and the 
asymptotic form of the magnetic field ( 2 )  into the equations (1 a-d) ; we neglect the 
inertial and viscous terms in the momentum equation (1  a )  ; we neglect the terms 
which are O(ca) compared to the retained terms; we thus obtain the governing 
equations for the side region. The variables which satisfy these equations and the 
symmetry conditions, 

V =  J y = O ,  at Y = O ,  

are 

where P and @ are unknown integration functions of X and Z .  
For the side-region variables ( 6 , 7 )  the boundary conditions (3a, 8 )  become 

Y V -  W = 0, at Y = f (2Z)t ,  

again neglecting terms which are O($) compared with those retained. We introduce 
the solutions (9b, c, e ,  f )  into these conditions to obtain the equations governing P 
and @. 

For the side region, the integral (4) gives 6 = p - l X ( 2 Z ) ; .  The equations (10) 
simplify if we use 6 instead of Z as the transverse coordinate. When we introduce 

(11) 
z=- p2e 

2x2 * 
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The equations (10) become 
a w  ap x-= -p- 
aS ax’ 

for 0 < X, [ < 00. The characteristic surfaces play a key role in the solutions for all 
subregions. In the core near the end of the magnet, p and $ are constant on the 
characteristic surfaces, i.e. are functions of 6 only. In (12), the right-hand sides 
represent the variations of P and @ along the characteristic surfaces [ = constant. 
The left-hand sides show ( a )  that there are no variations along these surfaces at X = 0 
where the side region must match the core near the end of the magnet and (b) that 
the variations along the characteristic surfaces increase with increasing X until P and 
0 become uniform across all characteristic surfaces, i.e. until a/a[-tO. 

The regularity conditions that U and J,  are bounded at Y = 2 = 0 become the 

For z = O(c-i), the O( 1)  flow is concentrated in the side regions, so that the O( 1 )  u = 0 
in the core region between the two side regions in the decaying magnetic field. Since 
j ,  < 1 here, Ohm’s law (1  b) and the symmetry condition, $ = 0 at z = 0, indicate that 
the O(  1) $ = 0 throughout this core. Therefore matching between the side region and 
the adjacent core gives the boundary conditions 

@ + O ,  P-tconstant, as [+a, (14) 

where the second condition follows from (12). The only condition required far 
downstream is that 0 and P do not grow exponentially as X+ co. 

Some of the O ( c f )  total electric current associated with the evolution of the side 
regions follows the characteristic surfaces into the core near the end of the magnet. 
For the current on the surfaces for [ > 1 ,  which close in this core (see figure 2), the 
electric circuit is completed near the end of the magnet. However, the current on the 
characteristic surfaces for 0 < [ < 1 follows these surfaces into the region of uniform 
magnetic field. As we shall see in $4, an O(c-!) length of pipe is required for this current 
to complete its circuit upstream, and the fully developed flow is disturbed over this 
pipe length upstream of the end of the magnet. However, we shall also see that the 
perturbation of the fully developed $ is O ( d ) ,  so that the O( l )$ i s  given by $ = z 
throughout the uniform-field region. Since the core near the end of the magnet 
matches the upstream solution in the uniform magnetic field as z+- 00 and matches 
the downstream side-region solution in the decaying magnetic field as x+ 00, since 
variations of $ along the characteristic surfaces in this core are O(ci), and since v and 
q5 are O ( d )  on the surfaces for [>  1 in this core, the solution in the side region in 
the decaying magnetic field must satisfy the boundary condition 

neglecting O ( d )  terms. The O(c4) terms neglected in these matchings are the largest 
terms neglected in the present analysis. Therefore, the first perturbation of the 
present side-region solution involves terms which are O(d) compared to those in (7). 
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We introduce Fourier cosine transforms, 

@ = 2r1Jom cos (Ag)  3 ( X ,  A )  dA, 

and a corresponding transform for P. The cosine transforms incorporate the boundary 
conditions (13) and (14) and reduce (12) to a pair of coupled, homogeneous, first-order 
ordinary differential equations in X, governing 3 and p. The transform of the 
boundary condition (15) gives 

at x = 0, 

where J1 is the Bessel function of the first kind and first order. The solutions of the 
transformed equations, which satisfy the boundary condition (17) and which do not 
grow exponentially as X+ co, can be expressed either in terms of modified Bessel 
functions of the second kind and of the one-third and two-thirds orders, or in terms 
of the Airy function and its derivative. The latter is preferable for ease of numerical 
evaluation : 

3 = (3)~7cI'(~)J1(A) Ai' [(&):X2]/2A, (18a) 

The solutions for @ and P a r e  obtained by introducing (18) into the Fourier inversion 
formula (16), and then the other side-region variables are given by (9). 

Explicit evaluations of the integrals (16) for the solutions (18) do not appear 
possible, so these integrals were evaluated numerically. A 24 point Gauss quadrature 
was used for the range 0 < A < A,, and the positive abscissas of a 20 point 
Gauss-Hermit quadrature were used for the range A, < A < a. The latter were 
chosen because of the exponential behaviour of the Airy function and its derivative 
for large argument. The constant A, was varied over a wide range of values to ensure 
that the combined quadrature accurately represents the infinite integrals. 

Typical results for U and P are presented in figure 5 for p = 0.898, which 
corresponds to a magnet gap of 6 in. (d = 0.076 m) and a standard commercial steel 
tube with L = 0.054 m. These values come from the design of an experimental 
apparatus at Argonne National Laboratory, and the particular values of X for the 
curves in figure 5 correspond to  particular local values of B, in these future 
experiments. This apparatus is currently being built and so the experimental results 
corresponding to the present analytical predictions are not yet available. I n  figure 
5(a ) ,  the flow near the point y = 0, z = - 1 is still accelerating and the fluid is still 
moving toward this point. At approximately X = 1 ,  the flow migration reverses. In  
figure 5 (b), the flow near y = 0, z = - 1 is decelerating and the fluid is migrating back 
toward z = 0. As X increases, significant values of U persist to larger values of 2. 
The side regions are spreading across the entire cross-section of the pipe and U is 
approaching a uniform velocity. Figure 5 (c) shows the very rapid acceleration near 
2 = 0, followed by the more gradual deceleration. For figure 5 ( d ) ,  the pressure far 
downstream is chosen as the pressure datum so that P+ 0 as X +  co . The transverse 
pressure variation is maximum for small values of X and decreases as X increases. 
This transverse pressure variation is due to j , B ,  in the z-component of the 
momentum equation (1 a), so the transverse pressure gradient reflects the magnitude 
ofj ,  for the local B,. The axial pressure gradient is negative near 2 = 0, but it is 
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FIGURE 5(a)-(d). Graphs of axial velocity and pressure in the side region near z = - 1 in the decaying 
magnetic field. Here /3 = 0.898, u = C ~ U ,  p = ciP, x = c - ~ X ,  z = - 1 +dZ, and B, = @ / X .  ( 1 )  
X =  0.509; (2) X = 0.565; (3) X =  0.636; (4) X = 0.727; (5) X = 0.848; (6) X = 1.018; (7) 
X = 1.272; (8) X = 1.696; (9) X = 2.035; (10) X = 2.544; ( 1 1 )  X = 3.391; (12) X = 5.088; (13) 
X = 10.176. 



210 J. S.  Walker 

positive for Z > 2. This pressure rise for Z > 2 is due to  the circulation of electric 
current in the (y = constant)-planes, frequently called the eddy current due to end 
effects. I n  this circulation, j, > 0 upstream in the uniform magnetic field and produces 
a pressure drop, whilej, < 0 downstream in the decaying magnetic field and produces 
a pressure rise. Since the magnetic field strength is larger upstream, the upstream 
pressure drop is larger than the downstream pressure rise. The net pressure drop is 
the pressure loss due to the eddy current. The value of this net pressure drop is 
determined in the next section. 

4. Disturbed fully developed flow in the uniform magnetic field 
Holroyd & Walker (1978) treat a problem which differs from the present one only 

because the magnet poles are doubly infinite in the axial direction and have a step 
increase in the gap at x = 0. The flow passes from a uniform magnetic field with B, = 1 
upstream, through a non-uniform magnetic field region near the step in the gap, and 
into another uniform magnetic field with B, = a < 1 ,  downstream. The flow follows 
the characteristic surfaces in the core near the step in the gap and enters the 
downstream weaker uniform magnetic field concentrated as jets in the finite-dimension 
side regions for (1 -a2$ < IzJ < 1.  The evolution of these jets near the points y = 0, 
z = f 1,  back across the entire cross-section of the pipe to  a uniform flow with u = 1 
requires an O(c-i) length of pipe downstream of the step and an O(ck) circulation of 
electric current. Part  of this current follows the characteristic surfaces through the 
core near the step and into the upstream stronger uniform magnetic field. An O ( c 3 )  
length of pipe upstream of the step is required to complete the circuit for this current, 
and the fully developed flow upstream is disturbed over this pipe length. The 
upstream disturbance is comparable to the fully developed-flow variables, i.e. the 
disturbance u and @ are O( 1) ,  and the disturbance pressure is comparable to the O ( d )  
pressure drop for fully developed flow over an O ( d )  length of pipe. 

The analysis of Holroyd & Walker (1978) assumes that a = O(1). The present 
analysis reveals that their solution is valid for cf 4 a < 1 .  Flow from a weaker 
magnetic field to a stronger one is described by their inertialess solution with the flow 
direction reversed. The present problem corresponds to  their problem with a = 0. For 
their problem, the evolution of the jets near y = 0, z = 1 back to a uniform flow 
through an 0(1) magnetic field requires an O(c4) electric current circulation; for the 
present problem, the evolution of the corresponding jets back toward a uniform flow 
through an O ( d )  magnetic field requires only an O ( d )  electric current circulation. Since 
the present current disturbing the upstream fully developed flow is O ( d )  instead of 
O(ci), all the present upstream disturbance variables are O(cf) smaller than those for 
the problem of Holroyd & Walker (1978). The analysis of the upstream perturbation 
of the fully developed flow in the uniform magnetic field with B, = 1 is very similar 
to  that presented by Holroyd & Walker (1978), so only the key steps and important 
differences are presented here. 

We introduce 

u = 1 +pjctu*, 2, = pjcfv*, (19% b )  

w = pjc!w*, j, = pjcfj:, (19c, d )  

j, = pjcQ;, j, = c+pjci j : ,  (19e3 f 1 
$4 = Z + f l C i $ 4 * ,  p = -cctx*+@c!p*, (19% h) 



Liquid-metal flow in a thin conducting pipe 21 1 

where the starred variables represent the first perturbation of the fully developed flow 
and are functions of x*, y, z, while x* = ctx < 0 is the compressed axial coordinate. For 
the flow in the decaying magnetic field, /3 is an intrinsic parameter, but for the 
disturbance to the upstream fully developed flow, /3 enters only as the multiplicative 
factor $ in (19) .  

We obtain the governing equations by substituting (19) into ( 1  u-d)  with B = 9, and 
by neglecting terms which are O(c0, N-lcf, W2c- ')  compared with the retained terms. 
The solutions with v* = jt = 0, at  y = 0, are 

(20u-c) 

where p* and $* are unknown integration functions of x*, z. The boundary conditions 
(3a ,  8 )  now give the equations governing these two functions 

a Z p *  ap* a$* 
(l-z2)--z- = z-, 

a22  az ax* 

for - co < x* < 0, - 1 < z < 1 .  The regularity conditions from the viscous side 
regions are that a$*/& and ap*laz are bounded at z = & 1 .  

We exploit the similarity of the equations (21)  and the fact thatp* and $* are even 
and odd functions of z respectively. We introduce the eigenfunction expansions 

into ( 2  1 )  to obtain the ordinary differential equation governing the eigenfunctions 

d2St - 
d82 
- - yi coses,. 

for 0 < 8 < n. Here z = cos 8; since p* and $* are independent of y, we can solve for 
them in the plane y = 0 with x*, z or we can solve for them on the lower inside surface 
of the pipe at  r = 1, with x*, 8. The regularity conditions become 

The eigenvalue problem (23)  and (24) ,  has eigenvalues y, which occur in pairs, fy,. 
Since the perturbation of the fully developed flow vanishes as x* +- CO, we only want 
the positive eigenvalues for the solutions (22). Holroyd & Walker (1978) present the 
first 30 positive values of yi. For each value of yi, we integrate (23)  with a fourth-order 
Runge-Kutta method and with 2000 steps between 0 and n. Since each St behaves 
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like an Airy function, i.e. exponentially for 0 < 8 < in, and sinusoidally for 
in < 8 < n, we normalize each eigenfunction with the initial condition 

Si(0) = exp [ - (:nri)tI> 
so that Si does not become very large during the integration from 0 to in. 

The coefficients ai in the expansions (22) are determined by a matching condition 
a t  x* = 0. I n  the problem treated by Holroyd & Walker (1978), the upstream and 
downstream disturbances of the fully developed flows in different uniform magnetic 
fields are comparable, and the downstream solution is given by eigenfunction 
expansions like the expressions (22) with the negative eigenvalues and x* > 0. The 
upstream and downstream solutions both match the core near the step in the gap 
where p and q5 are constant on the characteristic surfaces. These matchings give 
equalities between p* and #* in the upstream and downstream regions, evaluated a t  
x* = 0 and a t  values of z corresponding to  the different positions of a given 
characteristic surface for the two different magnetic field strengths. 

For the present problem, the O ( d )  shift in the order of the upstream disturbance 
(because of the downstream flow migration across an O ( d )  magnetic field) decouples 
the upstream and downstream problems. In the previous section, we used the fact 
that q5 = z + O ( d )  in the upstream uniform magnetic field to  derive the boundary 
condition (15) on the side-region solution in the decaying magnetic field. The O ( c f )  
pressure in the downstream side region is completely determined by the boundary 
condition (15). This pressure matches the O(&) pressure in the core near the end of 
the magnet, and this order pressure is constant on the characteristic surfaces in this 
core. Matching this core and the upstream pressure (19 h )  gives 

P;p* = P(O, [), at x* = 0, (25) 

for 0 < 5 < 1,  where 5 = ( 1  - z2)t = sin 8. The variation of P(0, 5) for 5 > 1 represents 
electric current whose circuit is closed within the core near the end of the magnet. 
The value of P(O, [ )  is obtained by substituting the solution (18b) with X = 0 into 
the Fourier inversion integral (16). While explicit evaluation does not appear possible, 
substitution of a standard integral equivalent of J ,  permits explicit integration with 
respect to h for 0 < [ < 1 ,  to  obtain 

r k  
p*(O,8) = (2)-4(3)k1r(i)jz.-  sgn(O-8)lsinO-sin81-f sin@ dQ. (26) -ill 

Since the integrand is singular at 0 = 8, we add and subtract 

sgn (8-6) sin8(cos6)-t(8-81-:, 

to  the integrand. The added term is integrated explicitly, and the subkacted term 
is combined with the original integrand so that there is no singularity a t  8 = 8. In 
addition, a series solution is necessary near 8 = in, i.e. z = 0, due to  the (cose)-t 
singularity. The values of the integral (26) for 100 values of 8 between 0 and in are 
determined using a Simpson’s rule method with 200 intervals for -in < 8 < in. 

The eigenfunction expansions (22) are truncated after the first 20 positive 
eigenvalues, and the expansion (22b) is introduced into the boundary condition (26). 
We choose the coefficients ai in order to minimize the appropriately weighted integral 
over 0 < 8 < in of the square of the difference between the left- and right-hand sides 
of (26). This least mean squared error gives 21 linear algebraic equations for a, to 
uz0. The coefficients in these linear equations are integrals of the products of pairs 
of eigenfunctions, which are not orthogonal, while the inhomogeneous terms are 
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FIGURE 6(a)-(c). Perturbations of the full developed flow in the uniform magnetic field. Here 
u = 1 +&du*, p = - c b * + B f c $ ~ * ,  X* = d. (1) X* = -0.02; (2) X* = -0.04; (3) z* = -0.06; 
(4) Z* = -0.08; (5)  Z* = -0.14; (6) Z* = -0.22; (7) Z* = -0.30. 

integrals of the eigenfunctions times p*(O,O), given by the integral (26). These 
integrals are evaluated using a Simpson’s rule. Once the a, are determined, the 
expansions (22) give p* and #*, and the equations (20) give the other disturbance 
variables. We only use 20 eigenvalues because the results are essentially unchanged 
by increasing the number of eigenvalues further. 

The results for u* and p* are presented in figure 6. Figure 6(a) shows that the flow 
begins its migration toward the ( z  = 0)-plane before it enters the non-uniform 
magnetic field. Since this perturbation is ignored by the solution in the decaying 
magnetic field, we can expect the actual downstream velocity profiles to be slightly 
less severe than those in figure 5(a,  b), i.e. U near 2 = 0 should be slightly smaller 



214 J .  S. Walker 

and U for large Z should be slightly larger. Figure 6(b) shows that the largest 
transverse pressure variation occurs near x* = 0 and decreases as -x* increases. The 
perturbation pressure increases the axial pressure gradient for 0 < 121 < 0.8, and 
decreases it for 1zI > 0.8, as shown in figure 6(c). The large pressure drop at z = 0 is 
the pressure drop associated with the eddy current due to end effects. 

Far upstream the pressure (19 h)  approaches 

p = -cx+a,@ci, 

where a, = 0.9336. If we had fully developed flow in a uniform magnetic field with 
B, = 1,  to the end of the magnet, i.e. for x < 0, and fully developed ordinary 
hydrodynamic (OHD) flow with no magnetic field, beyond the end of the magnet, 
then the pressure would be given by p = -cx, for x < 0, and p = 0, for x 2 0. We 
are assuming that the pressure gradient without a magnetic field is negligible. In fact 
the ratio of the pressure gradients for fully developed OHD and MHD flows in this 
pipe isf/2cN, wherefis the traditional friction factor for the OHD flow. Since N 2 c-3, 
this ratio is much less than fci. The difference between the upstream pressures for 
the actual flow and for the discontinuous fully developed flows is the net pressure 
drop due to the eddy current, namely, 

The corresponding expression for the problem of Holroyd & Walker (1978) is kd, 
where k depends on a, and k+O, as a+O. In (27), the net pressure drop increases 
as /3 increases, i.e. as the gradient of the decaying magnetic field decreases. A smaller 
magnetic-field gradient means that the three-dimensional effects are less severe, but 
it also means that the magnetic field persists for a longer distance downstream of the 
end of the magnet. Therefore, the electromagnetic resistance to the flow persists over 
a longer pipe length and requires a larger overall pressure drop. 

5. Concluding remarks 
The pressure serves as a stream function for the electric-current density in the fluid. 

Therefore, the results presented in figures 5 ( d )  and 6 ( b )  (with -$x* added to the 
latter) provide a sketch of current lines in the plane y = 0, as shown in figure 7. The 
actual current lines for a given problem would depend on the values of c and 8. The 
axial current lines in the decaying magnetic field are confined to the side regions near 
z = f 1 with an O ( d )  transverse dimension, but for most practical values of c, c! is 
not particularly small (c = 0.01 gives ci = 0.215). For the electric currents in the pipe 
wall, the x-component is everywhere smaller than the B component, so that each 
current line leaving the wall at z = - 1 in figure 7 can be considered to complete its 
circuit through the wall at that cross-section. Since q5+z as x+-m and q5+0 as 
x+m, the overall axial voltage variation is linear in z. The axial voltage difference 
is 0 at z = 0 and maximum at z = _+ 1. This helps explain why the magnitude of j, 
increases with increasing 121. Upstream the wall and liquid represent resistances in 
series and the e.m.f. is uB,. The wall has the larger resistance and determines the 
magnitude of the current, namely O(c). Downstream the wall and liquid represent 
resistances in parallel and are part of the electrical circuit completed by the axial 
currents to and from the upstream region and the transverse current in the upstream 
liquid. The,e.m.f.s for this circuit are uB, a t  each x and the axial voltage differences. 

In the core near the end of the magnet, the electric current follows the characteristic 
surfaces. Physically the characteristic surfaces arise because the conductor is a liquid 
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FIGURE 7 .  Sketch of electric current lines in half of the (y = 0)-plane. 

instead of a solid. If the liquid were replaced by a moving solid, we would solve the 
equations (1 b, c )  with u = 2 to  determine j .  The momentum equation (1 a )  would be 
replaced by the equilibrium equation stating that the solid provides whatever stress 
distribution is needed to balance j x B, up to some strength limit. A liquid in a strong 
magnetic field has no structure to provide an arbitrary stress field, and this fact is 
reflected by the momentum equation (1  a )  with N ,  M @ 1. Only the pressure gradient 
can balance j x B, so the latter must be irrotational. The current j is still determined 
by Ohm’s law ( 1  b) ,  but now u is a variable. If there is a current through the known 
magnetic field such that j x B  cannot be balanced by V p ,  then the imbalance 
accelerates the flow until either the inertial or viscous terms re-established equilibrium. 
This requires a very large u, since N ,  M @ 1. This large u changes the relationship in 
the Ohm’s law ( 1  b) until the changing j produces an  irrotational body force and u 
can again become only O(1). I n  other words, if the current deviates slightly from 
following the characteristic surfaces, then the flow is accelerated very rapidly and 
the resultant change in u x B brings j back to the characteristic surfaces. We would 
normally think that the momentum equation ( 1  a )  determines the flow and that the 
Ohm’s law ( l b )  determines the electric current, but, for a liquid metal in a strong 
magnetic field, these roles are reversed. The electric current is primarily governed by 
the momentum equation (1 a) which states what currents the liquid conductor can 
sustain. Ohm’s law ( 1  b) then determines the flow distribution whose induced electric 
field u x B provides this current. 

The flow continues to evolve downstream of the side regions in the decaying 
magnetic field. The side-region velocity profiles in figure 5 (b)  are spreading across the 
entire pipe cross-section as X + 00. We expect the next axial region to  have an O( 1 )  u 
throughout and an axial length @ c-4. As B,+O, the inertialess approximation fails, 
and we expect inertial effects to  be significant in the next axial region. If the Reynolds 
number, R e  = P I N ,  is sufficiently large, the flow eventually becomes turbulent, 
i.e. the local B, becomes too small to suppress turbulence. We can estimate where 
this transition will occur for large Re. Transition in a circular pipe with a large Re 
and with a transverse magnetic field occurs at N,, = M,,/155 (Branover 1978 p. 156). 
In  the present decaying magnetic field B, = P/x, so that the local interaction 
parameter and Hartmann number are NP2/x2  and MP/x,  respectively. This indicates 
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transition at approximately x = 155 P N / M .  Ultimately the flow returns to fully 
developed OHD pipe flow. 

The present analysis ignores the flow evolution beyond the side regions in the 
decaying magnetic field. The first justification for this is that  the pressure variations 
in this further flow evolution are negligible compared with those treated here. We 
previously noted that the pressure gradient for an OHD flow is negligible compared 
to  that for the present MHD flow. I n  the intermediate axial region where inertial and 
MHD effects are comparable, the pressure gradient is roughly proportional to Bi, and 
BL is extremely small beyond the side regions. The second justification is that the 
present analysis captures the essential flow pattern : as the flow enters the non-uniform 
magnetic field, i t  becomes concentrated near y = 0, z = f 1, and then, as B, becomes 
small, the flow migrates back toward a uniform flow. The inertial and turbulent 
regions beyond the regions treated here achieve the final adjustment to fully 
developed OHD flow, but do not affect the basic flow pattern near the end of the 
magnet. 

Holroyd (1980) presents experimental results for a thin-walled circular pipe and 
a magnet with a step in the poles giving a 50 yo reduction in magnetic field strength 
(a = 0.5). However, for the experiments c = 0.2, so that c i  = 0.765. The present 
analysis shows that the analysis of Holroyd & Walker (1978) requires that a $ ci, 
which is clearly not satisfied in Holroyd’s experiments. Holroyd finds that the actual 
dimensionless pressure drop due to the eddy current near the step in the magnet poles 
is 0.126, while the analysis of Holroyd & Walker gives only 0.073, both relative to 
two fully developed flows with different B, and joined a t  x = 0. The present formula 
(27) gives0.307 for Holroyd’s experiments (P = 0.89 ford = 5.0 cm and L = 3.58 cm). 
The present analysis overestimates the pressure drop for Holroyd’s experiments 
because the analysis has a slow, algebraic decay of B, to 0, while a step gives a rapid, 
exponential decay of B, to 0.5. Nevertheless the result of the present analysis, which 
corresponds to a + ci, and the result of Holroyd & Walker’s analysis, which assumes 
a B ca, bracket the experimental result for a = O(ci). The extension of the present 
analysis to a stepped magnet with a = O ( d )  would be straightforward. In  the 
asymptotic sense, (27) is O(cg), which is smaller than the corresponding result of 
Holroyd & Walker, kct, where k = 0.163 for a = 0.5. However, for c = 0.2, (27) gives 
a much larger pressure drop than the result of Holroyd & Walker. While the focus 
of Holroyd’s experiments is the flow near a step in long, parallel pole faces, Holroyd 
also presents a few pressure measurements near both ends of the magnet. Unfortu- 
nately these measurements are only given for roughly two diameters beyond the ends 
of magnet, and it is not clear what the pressure is approaching in the decaying 
magnetic field a t  either end. However, the three-dimensional pressure drops at both 
ends appear to be the same order of magnitude as the appropriate predictions of the 
present analysis. 

With c = 0.01, the assumption that c < 1 seems reasonable. However, the asymp- 
totic analysis for small c assumes that every positive power of c is also small. The 
present analysis neglects terms which are O ( d )  compared to  the retained terms. Since 
d = 0.464 for c = 0.01, the pressure drop prediction (27) and the other results should 
be viewed as having a possible 50 yo error in either direction. The asymptotic analysis 
predicts that  the flow downstream of the end of the magnet is concentrated in the 
tangent regions near z = f 1, while the fluid elsewhere is nearly stagnant. However, 
the transverse dimension of these tangent regions is O(cf) and ci = 0.215 for c = 0.01. 
Figure 5(a) indicates that U approaches 0 at  approximately 2 = 4.5, which corre- 
sponds roughly to  z = 0 for this c .  Therefore the velocity profiles in figure 5 (a )  actually 
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just met a t  the centre of the duct and there is no stagnant region. For the velocity 
profiles in figure 5 ( b )  and for the weaker values of the magnetic field strength U is 
still significant at 2 = 6.0, which is beyond the centre of the duct for this c. For these 
velocity profiles the two tangent regions have spread across the entire duct and are 
no longer independent as assumed in the asymptotic analysis. What one might expect 
in an experiment with c = 0.01 is that the velocity near z = 0 decreases but never 
actually goes to zero, while the velocity near z = f 1 increases to perhaps twice the 
average velocity, corresponding to the peak in figure 5 ( c ) .  In the change of 
coordinates X = dx, x is measured from the end of the magnet. However, since the 
analysis neglects terms which are O(d)  compared to those retained, this change of 
coordinate is actually X = d (x-xo) where xo is an arbitrary position within an O(1) 
distance of the end of the magnet. This is the reason why the velocity profiles in figure 
5 are presented for values of X which correspond to particular values of B, since in 
any experiment the position for a particular field strength is known. However, when 
we plot the pressure as a function of x from the solutions for the disturbance to the 
fully developed flow, for the flow along characteristic surfaces near the end of the 
magnet and for the flow migration in the decaying, O(d)  magnetic field, there is an 
arbitrariness about where these solutions should be linked, corresponding to the 
arbitrariness in the origins for X and x*. As with any asymptotic analysis, the physical 
point where the inner and outer solutions meet is not defined. The ability of the 
present asymptotic analysis to predict results for finite values of c can only be 
confirmed experimentally. 
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